2017-05-02 20:39:16

  作為機器學習的領軍人物,Yann LeCun(楊立昆)曾在 25 年前開發過一塊名為 ANNA 的人工智能芯片。而現在,構建適用於深度學習的計算芯片已成為所有科技巨頭共同的發展目標。

  那是 1992 年,LeCun 還供職於貝爾實驗室,這座位於紐約市郊的研發機構舉世聞名。他和一群研究者們共同設計了一種適用於進行深度神經網絡計算的芯片 ANNA,用於高效處理需要分析大量數據的複雜任務,但 ANNA 從未投入市場。隨後的二十多年裏,神經網絡隨著計算機性能的不斷提升,開始在識別文字、人臉和語音等任務中達到甚至超越了人類水平。但人工智能還遠沒有達到威脅人類智能的水平,那些用於特定任務的算法,在執行其他種類任務的時候,不會產生任何有意義的結果。

7a17f6fd813f5f284a9d6257780c5a31.jpg

  盡管如此,今天的神經網絡還是在重塑著所有科技公司的麵貌,穀歌、Facebook、微軟都在做著自己的改變。LeCun 現在已經成為 Facebook 人工智能實驗室的主任。在那裏,神經網絡被用於識別人臉、標注圖片中的事物、翻譯語言甚至更多。在 25 年後,LeCun 認為市場現在非常需要像 ANNA 這樣的芯片,很快,它們將大量湧現。

  穀歌剛剛有了自己的人工智能芯片 TPU,這種芯片已經廣泛用於穀歌的數據中心,成為其網絡帝國的引擎。每台安卓手機的穀歌語音搜索指令都會經由 TPU 處理。這隻是芯片業巨大變革的開始,CNBC 等媒體 4 月 20 日 的報道指出,穀歌 TPU 的開發者們正在秘密成立的創業公司 Groq 重新集結,開發類似的人工智能芯片;而傳統芯片廠商,如英特爾、IBM 和高通也在做著同樣的努力。

  穀歌在本月初推出 TPU 時稱:「它是我們的第一塊機器學習芯片。」在穀歌發表的論文中,TPU 在一些任務中的處理速度可達到英偉達 K80 GPU 與英特爾 Haswell CPU 的 15-30 倍。而在功耗測試中,TPU 的效率也比 CPU 和 GPU 高 30-80 倍(當然,作為對比的芯片並不是最新產品)。

e23d060cdd68b1984470a738dc031d75.jpg

  穀歌 TPU 芯片已經成為其數據中心的重要組成部分

  像穀歌、Facebook 和微軟這樣的科技巨頭當然可以把自己的神經網絡任務交給常規計算機芯片來處理(如 CPU),但 CPU 是設計用來處理所有類型任務的,這種方式顯得效率很低。當使用特殊設計的芯片進行處理時,神經網絡任務會運行得更快,消耗更少的電力。穀歌宣稱隨著 TPU 的應用,它為穀歌節約的成本可以打造另外 15 個數據中心。而隨著穀歌、Facebook 等公司將神經網絡應用於手機和 VR 頭盔,為了減少延遲,在個人設備上的小型智能芯片也變得迫在眉睫了。「在更加高效的專業芯片方麵,市場還有很大一片空白,」LeCun 說道。

  技術巨頭

  在收購了初創公司 Nervana 之後,英特爾正在打造一款機器學習專用芯片。IBM 也是,它正在創建一個可以映射(mirror)神經網絡設計的硬件架構。最近,高通已經開始製造執行神經網絡的專用芯片,這條消息來自 LeCun,因為 Facebook 正幫助高通開發機器學習相關技術所以他對高通的計劃很了解;高通技術部副主席 Jeff Gehlhaar 證實了該計劃,他說:「在原型機研發方麵,我們還有很多路要走。」

  高通一直在和 Yann LeCun 在 Facebook AI 研究機構的團隊保持合作,共同開發用於實時推理的新型芯片。高通最近宣布計劃花費 470 億美元收購荷蘭汽車芯片公司 NXP。在收購宣布之前,NXP 就在致力於解決深度學習和計算機視覺難題,看來高通希望借助收購加強自動駕駛係統的開發。

  自動駕駛是深度學習與人工智能發揮作用的主要領域之一。除此之前,內置芯片有很多其他選擇以與真實世界交互,比如手機和虛擬現實耳機。當前技術發展飛快,我們很快就會看到其他實際應用的出現。

  很多公司想把握住這一藍海機遇,比如傳統芯片巨頭英特爾和 IBM。Big Blue 努力在其 Minsky 人工智能服務器中把 RISC 芯片和英偉達 GPU 結合起來的同時,其研究團隊也在探索其他芯片架構。IBM Almaden 實驗室探討了其類腦芯片 TrueNorth 的性能,該芯片具備 100 萬個神經元和 2.56 億個突觸。IBM 稱在若幹個視覺和語音數據集中,TrueNorth 給出了接近當前最高分類精確度的深度網絡。

  IBM 研究院類腦計算首席科學家 Dharmendra Modha 在其博文中說道:「類腦計算的目標是在不斷逼近時間、空間和能量的根本限製的情況下,給出可擴展的神經網絡基礎(substrate)。」

  作為芯片領域最大的玩家,英特爾並沒有止步不前,它也正在根據下一代人工智能工作需求開發自己的芯片架構。去年,英特爾宣布其第一個人工智能專用硬件 Lake Crest(其技術基於 Nervana)將在 2017 年上半年推出,並在稍後接著推出 Knights Mill,它是 Xeon Phi 聯合處理器架構的下一個迭代。

  英偉達已成為人工智能硬件領域的主力軍之一。在穀歌、Facebook 等公司能夠使用神經網絡翻譯語言之前,他們必須首先用特殊任務訓練神經網絡,給神經網絡輸入現有的大量翻譯數據集。英偉達製造了可以加快這一訓練進程的 GPU 芯片。LeCun 說,在訓練方麵,GPU 通常考慮的是市場,尤其是英偉達 GPU。但是 Farabet 的出現也許表明,英偉達正和高通一樣,也在探索一旦接受訓練就可運行神經網絡的芯片。

第1頁  第2頁  

http://www.autooo.net/autooo/elec/news/2017-05-02/172153.html